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Glassy systems are characterized by an extremely sluggish dynamics without any simple
sign of long range order. It is a debated question whether a correct description of such
phenomenon requires the emergence of a large correlation length. We prove rigorous
bounds between length and time scales implying the growth of a properly defined
length when the relaxation time increases. Our results are valid in a rather general
setting, which covers finite-dimensional and mean field systems.

As an illustration, we discuss the Glauber (heat bath) dynamics of p-spin glass
models on random regular graphs. We present the first proof that a model of this type
undergoes a purely dynamical phase transition not accompanied by any thermodynamic
singularity.
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1. INTRODUCTION

A broad class of liquids show a dramatic slowing down of their dynamics as the
temperature is lowered (or the density increased) without any simple sign of long
range order setting in Ref. 1. In particular, the static structure factor S(�k) = 〈ρ�kρ−�k〉
is hardly distinguishable from the one of a liquid, even if the system has become
a solid from a dynamical point of view. We shall generically refer to systems
displaying analogous phenomena as ‘glassy.’

The above features are reproduced in mode-coupling theory, as well as in
some mean-field models, where the slowing down is promoted to a real dynamical
phase transition without any simple static signature(2) In both these theories, only
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short range correlations are taken into account, thus leading to the idea that they
are the only responsible for the slow dynamics.

Physical commonsense suggests however that, in systems with finite range
interactions, only cooperative effects on large length scales may lead to a large
relaxation time. This expectation has been recently substantiated by introducing
a ‘dynamical’ correlation length in terms of a (dynamical) four points correlation
function(3–7) (see Refs. 8, 9 for recent developments). In this paper we confirm this
line of thought through a rigorous argument. We define a time scale τ , and length
scale � appropriate for glassy systems and prove that they satisfy the inequalities

C1� ≤ τ ≤ exp{C2�
d}, (1)

where C1,2 are two constants to be specified below, and d is the system spatial
dimension. This implies, in particular, that glassy systems are characterized by a
large length scale, increasing as the temperature is lowered. The solution to the
conundrum is that � is defined in terms of point to set instead of point to point
correlations (which are probed, for instance, in scattering experiments). It is worth
mentioning that the definition of � is purely statical (it does not depend on the
dynamics, as long as this satisfies a few conditions), and that it is closely related
to the Gedanken experiment discussed in Ref. 10.

The physical intuition behind (1) is elementary. The lower bound follows
from the observation that in order for the system to relax, information must be
spread through at least one correlation length, and this cannot happen quicker
than ballistically. For the upper bound, one argues that, without much harm, the
system can be cut into boxes of size �, and that, within each box, the relaxation
time cannot be larger than exponential in the volume.

Both these arguments apply to a much larger family of models than the
ones defined on d-dimensional lattices. Here we consider systems on general
factor graphs with bounded degree (see Sec. 2.1 for a definition). In this case,
the �d factor in the upper bound of Eq. (1) must be replaced by the volume of
a ball of radius � in the graph. There are two motivations for considering such
generalizations. On one hand, sparse random graphs allow to define mean field
theory, while retaining some features (a bounded number of neighbors and a
locality structure) of finite dimensional models. On the other hand, they appear in
a variety of random combinatorial and constraint satisfaction problems, ranging
from coloring(11) to K-satisfiability.(12) In this context, one recurrent question is
whether configurations (or solutions) can be sampled efficiently using the Markov
Chain Monte Carlo method. Understanding the relaxation time scale for Glauber
dynamics is relevant for this question. In this context, point to set correlations and
their relation to relaxation times were first considered in Ref. 13 and subsequently
studied in Ref. 14. In the following pages, we shall analyze one prototypical
example of such system: the p-spin model (also known as XOR-SAT) on random
regular graphs.
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The relation between correlations in space and time (or spatial and tempo-
ral mixing) is indeed a well established subject in probability and mathematical
physics, with many beautiful results (see for instance(15,16) and references therein).
There are several reasons for presenting a new variation on this classical theme:
(i) Most of the mathematical literature deals with translation invariant systems on
finite dimensional lattices. (ii) The focus there is on ’global’ characterizations of
the space and time correlations, such as the spectral gap of the Markov generator,
or the log-Sobolev constant. These are hardly accessible to experiments or numer-
ical simulations, and in fact are not considered in the physics literature. (iii) The
dichotomy between vanishing and not-vanishing gap (or log-Sobolev constant)
which is crucial there, is not that important for glasses. In many such systems,
the gap vanishes well above the glass transition due to Griffiths singularities, or
to the existence of metastable states that are not relevant when the dynamics is
initiated with a random initial condition. (iv) The spatial mixing hypothesis used in
mathematics requires decay of correlations uniform over the boundary conditions.
This is probably too restrictive, especially in models defined on sparse graphs, for
which the boundary of a domain can scale like its volume.

The treatment presented here is essentially self contained, and based on
elementary combinatorial arguments (in part inspired by Ref. 17. In Sec. 2 we
provide our definitions of length and time scales and state precisely our main
results. In the same Section we discuss qualitatively possible generalizations. As
an illustration of the main results we consider in Sec. 4 the p-spin glass model
on random graphs. In order to carry on our analysis, we prove the first rigorous
bounds on the relaxation time of a model in this class. In particular, these imply the
occurrence of a purely dynamical phase transition as the temperature is lowered.
Section 3 contains a few alternative definitions of length scale and a discussion of
their equivalence. The proofs of the main results are contained in Secs. 5 and 6,
with the most technical parts relegated in a series of Appendices.

2. DEFINITIONS AND MAIN RESULT

2.1. General Graphical Models: Equilibrium Distribution

Factor graphs(18) are a convenient language to describe a large class of statisti-
cal mechanics models. A factor graph G ≡ (V, F, E) is a bipartite graph with two
types of vertices: variable nodes (also called sites in the following) V � i, j, k, . . .

and function nodes F � a, b, c, . . . Edges are ordered pairs (i, a), with i ∈ V and
a ∈ F . The number of variable nodes in G will be denoted by N ≡ [V ], and we
shall identify V = {1, . . . , N }. Given i ∈ V (respectively a ∈ F), its neighbor-
hood ∂i(∂a) is defined as the set of function nodes a (variable nodes i) such that
(i, a) ∈ E . We assume that the graph has bounded degree, ie. that |∂i |, |∂a| ≤ �

for some � > 0.
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The distance di j between two nodes i, j ∈ V is the length (number of function
nodes encountered along the path) of the shortest path joining i to j. Given a non-
negative integer r and a node i ∈ V , the ball of radius r around i, Bi (r ), is the
subset of variable nodes j with di j ≤ r . With a slight abuse of notation, Bi (r ) will
sometimes be the sub-graph induced by these nodes. Finally, given U ⊆ V , we let
∂U ⊆ V \U be the subset of variable nodes at unit distance from U.

We deal with models with discrete variables, taking values in the finite set
X . A configuration is a vector x = (x1, . . . , xN ), xi ∈ X . For A ⊆ V , we write
xA ≡ {xi : i ∈ A}. In order to lighten the notation we shall write x∼i,r instead of
xV \Bi (r ) for the configuration outside the ball of radius r around i.

A probability distribution over configurations is defined by introducing one
compatibility function ψnode for each node in G. These are non-negative functions,
with ψa : X ∂a → R at function nodes and ψi : X → R at variable nodes. We
define

µ(x) = 1

Z

∏

a∈F

ψa(x∂a)
∏

i∈V

ψi (xi ). (2)

Compatibility functions can also be used to define conditional probabilities. Let
U ⊆ V and F(U ) ⊆ F be the subset of function nodes having at least one neighbor
in U. If y = (y1, . . . , yN ) is a configuration, we define

µ
y
U (x) = 1

Z y
U

∏

a∈F(U )

ψa(x∂a)
∏

i∈U

ψi (xi ), (3)

if x coincides with y on U c ≡ V \U (i.e. xU c = yU c ) and µ
y
U (x) = 0 otherwise.

The normalization constant Z y
U ensures that

∑
x µ

y
U (x) = 1.

Since we allow for vanishing compatibility functions (hard core interactions),
the above expressions could be a priori ill defined. In order to avoid this, and to
simplify our treatment, we shall restrict ourselves to permissive interactions (the
definition we give here is very close to the one of Ref. 17. This means that for
each site i there exists x∗

i ∈ X such that, given any non-empty U ⊆ V , if xi = x∗
i

for each i ∈ U , then the right hand side of Eq. (3) is strictly positive regardless of
the assignment of x on ∂U . In particular, this must be the case when the subset is
a single vertex U = {i}. We denote by µ0 > 0 a lower bound on the conditional
probability for the corresponding state to be x∗

i . In other words, we ask that
µ

y
i (x∗

i ) ≥ µ0 for all i and y.

2.2. Glauber Dynamics

The dynamics is specified as a single spin flip, continuous-time Markov
process, irreducible, aperiodic and satisfying detailed balance with respect to the
distribution (2). More precisely, for each variable node i, a set of transition rates
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κ x
i (ξ ) ≥ 0, with ξ ∈ X and

∑
ξ κ x

i (ξ ) = 1 is specified. Each variable node i ∈ V is
associated to a clock, whose ringing times are distributed according to independent
rate-one Poisson processes. When the clock at site i rings, a new value ξ ∈ X is
drawn from the distribution κ x

i (ξ ), x being the current configuration. The new
configuration x ′ coincides everywhere with x but on i, where x ′

i = ξ . In order to
verify detailed balance, the following condition must be satisfied by the transition
rates:

µ(x)κ x
i (x ′

i ) = µ(x ′)κ x ′
i (xi ). (4)

for any two configurations x and x ′ that coincide everywhere but on i.
In our treatment we shall make two assumptions on the transition rates.

• Locality. The transition rates κ x
i (·) depend on the current configuration x

only through x j , with di j ≤ 1. Although its precise form could be modified
(and somewhat relaxed), this is a crucial physical requirement: the Markov
dynamics must be local with respect to the underlying graph G.

• Permissivity. Let x∗
i the state permitted at node i regardless of the configu-

ration at V \{i}. Then, there exists κ0 > 0 such that κ x
i (x∗

i ) ≥ κ0 indepen-
dently of i and x. This assumption can somewhat be relaxed at the expense
of some technical difficulties.

A well known example of transition rates satisfying these conditions is given
by the so-called ‘heat-bath rule’:

κ x
i (ξ ) = µx

i (ξ ). (5)

It will be also useful to define the Markov dynamics on a subset of the vertices U ⊆
V , with boundary condition y ∈ X V . By this we mean that the initial configuration
agrees with y on V \U , and that variables outside U are ‘frozen’: each time the
clock rings at a site i ∈ V \U , the configuration is left unchanged.

We shall sometimes use the notation 〈·〉 for averages with respect to the equi-
librium distribution µ or the Markov process defined above, with initial condition
distributed according to µ. We also denote by 〈·〉y

U averages with respect to the
subset in U with boundary y (i.e. either with respect to the distribution µ

y
U or with

respect to the Markov process on U with initial condition distributed according
to µ

y
U ).

2.3. Length and Time Scales and Their Relation

Both our definitions of length and time scales depend on a parameter ε. This
should be thought of as some fixed small number (let’s say 0.01), that provides a
cut-off for distinguishing ‘highly correlated’ from ‘weakly correlated’ degrees of
freedom. The physical idea is that, near a glass transition, the order of magnitude of
the resulting length and time scales should be roughly independent of ε as long as
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this is smaller than a characteristic value (the ‘Edwards-Anderson’ or ‘ergodicity
breaking’ parameter).

Consider a vertex i in G. Let f (xi ) be a function of the variable at i, and
F(x∼i,r ) a function of the variables whose distance from i are larger than r . The
covariance 〈 f (xi )F(x∼i,r )〉 − 〈 f (xi )〉〈F(x∼i,r )〉 measures the degree of correlation
between the observables f and F. In order to quantify the degree of correlation
of xi and x∼i,r , it makes sense to consider the ‘most correlated’ observables and
define

Gi (r ) ≡ sup
f,F

∣∣〈 f (xi )F(x∼i,r )〉 − 〈 f (xi )〉〈F(x∼i,r )〉∣∣ , (6)

where the sup is taken over all functions such that | f (xi )|, |F(x∼i,r )| ≤ 1 for any
x. The correlation length �i (ε) of vertex i is defined as the smallest integer � such
that Gi (r ) ≤ ε for all r ≥ �. In formulae

�i (ε) ≡ min{� ≥ 0 s.t. Gi (r ) ≤ ε∀r ≥ �}. (7)

If no such � exists, �i (ε) is set by convention to the maximum distance from i of a
vertex in G.

The time scale definition is completely analogous to the above one. We let

Ci (t) = sup
f

|〈 f (xi (0)) f (xi (t))〉 − 〈 f (xi (0))〉〈 f (xi (t))〉|, (8)

the sup being taken over functions of the variable at i such that | f (xi )| ≤ 1 for any
xi . Then we let

τi (ε) = inf{τ ≥ 0 s.t. Ci (t) ≤ ε∀t ≥ τ }. (9)

This expression is well defined, and the resulting τi (ε) is always finite. In fact,
if we define C f

i (t) ≡ 〈 f (xi (0)) f (xi (t))〉 − 〈 f (xi (o))〉〈 f (xi (t))〉, the spectral rep-

resentation of the transition probabilities,(19) implies C f
i (t) = ∑n

l=2 e−λl t Bl(i, f ).
Here 0 < λ2 ≤ λ3 ≤ . . . are the eigenvalues of the Markov generator, the Bl are
non-negative coefficients, and n is the number of configurations of the system. In
consequence this correlation function is positive, decreasing and has a vanishing
limit when t → ∞.

Both definitions given here admit several essentially equivalent variants which
can be helpful depending on the circumstances; we shall discuss some of them in
Sec. 3. We can now state our main result, whose proof can be found in Secs. 5
and 6.

Theorem 1. Under the hypothesis presented in this Section

C1�i (|X |
√

2ε) ≤ τi (ε) ≤ 1 + A exp{C2|Bi (�i (ε/2))|}, (10)
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where A = log( 4
ε
), C1 = 1/2e�2, C2 = − log(κ0(1 − e−1)), and the lower bound

holds under the assumption �i (|X |√2ε) > log2(2/ε).

Let us stress that Ref. 13 (Theorem 1.5) proves a very general result that is
closely related to the above lower bound. Despite the fact that both the statements
and the proofs are quite similar, we think that our formulation can be better suited
for physics applications. The authors of Ref. 13 provide in fact a bound on the
spectral gap, a quantity that is hardly accessible in experiments or simulations.
Further it does not correspond to an interesting time scale when studying the glass
transition. In fact, the relaxation time defined as the inverse spectral gap becomes
exponential in the system size well above the dynamical glass transition (roughly
speaking, at the appearence of the first metastable states). This can be shown, for
instance, in the example of Sec. 4.

2.4. Problems and Generalizations

Let us briefly discuss Theorem 1 and a few related research directions. As
shown in Sec. 4, this theorem can be only marginally improved in the general
setting described above. It would therefore be interesting to determine additional
conditions under which the upper/lower bounds are in fact closer to the actual
correlation time.

Recently there has been a considerable interest in a ‘dynamical’ length scale
ξ4 defined through four point correlation functions.(9) It would be interesting to
understand whether a general relation holds between ξ4, and the length � defined
in Eq. (7). Within mean field models undergoing a discontinuous glass transition,
it has been argued that they are in fact closely related.(20,21)

The notion of ‘growing length scale’ is useful also when the initial condition
for the Markov dynamics is not drawn from the equilibrium measure3 µ(x). Of
particular interest is the case of a uniformly random initial condition x ∈ X N (a
‘quench from infinite temperature’). The definition (7) can be generalized to this
setting if the expectations in Eq. (6) are taken with respect to the measure at some
time t ≥ 0. The resulting length will depend on time: �i (ε, t), and is expected to
increase with t, starting from �i (ε, 0) = 0 until it reaches the equilibrium value
�i (ε,∞) = �i (ε). The disagreement percolation technique used to prove the lower
bound in Theorem 1 can be generalized to this case, cf. Sec. 5, to show that
�i (ε, t) ≤ C̃t .

Finally, it would be interesting to consider more realistic models for glasses,
e.g. off-lattice particle systems with Langevin dynamics. We guess that similar

3 The question was posed to us by Giulio Biroli.
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ideas to the ones proposed here can be useful in that case, although at the expenses
of several technical difficulties.

3. ALTERNATIVE DEFINITIONS OF LENGTH SCALE

The basic physical idea in the definition of length scale is to look at cor-
relations between a point (a vertex) and the whole set of variables at distance
larger than r from it. Equation (6) provides one measure of these correlations.
Here we shall define four alternative measures G(n)

i (r ), n = 1, . . . , 4. For any such
measure, we can define a length scale exactly as in Sec. 2.3,

�
(n)
i (ε) ≡ min{� ≥ 0 s.t. G(n)

i (r ) ≤ ε∀r ≥ �}. (11)

The question which we shall address shortly is to what extent these definitions are
equivalent.

The first two definitions express the idea that two random variables are weakly
correlated if their joint distribution is (approximately) factorized. With an abuse
of notation we denote by µ(xi , x∼i,r ) the joint distribution of xi and x∼i,r and by
µ(xi ), µ(x∼i,r ) their marginal distributions. Then we define

G(1)
i (r ) ≡ sup

xi ,x ′
i

∑

x∼i,r

∣∣µ(x∼i,r |xi ) − µ(x∼i,r |x ′
i )
∣∣ , (12)

G(2)
i (r ) ≡

∑

xi ,x∼i,r

∣∣µ(xi , x∼i,r ) − µ(xi )µ(x∼i,r )
∣∣ . (13)

One inconvenient of the definition of Gi (r ), cf. Eq. (6), as well as of G(1)
i (r )

and G(2)
i (r ) is that they are difficult to evaluate. Equation (6), for instance, requires

the optimization with respect to F which is, in general, a function of �(N ) vari-
ables. Given a function f of the variable at i, we let f̂ be the function of x∼i,r

obtained by taking the expectation of f with respect to the conditional distribu-
tion corresponding to the boundary condition x∼i,r outside Bi (r ). In formulae:
f̂ (x∼i,r ) = 〈 f (xi )〉x

Bi(r).
We then define

G(3)
i (r ) = sup

f

∣∣〈 f (xi ) f̂ (x∼i,r )〉 − 〈 f (xi )〉〈 f̂ (x∼i,r )〉∣∣ , (14)

where, again, the sup is taken over the functions f such that | f (xi )| ≤ 1 for any x.
Note that one can always decompose an arbitrary function f (xi ) in terms of the
|X | indicator functions fξ (xi ) = I(xi = ξ ), hence G(3)

i (r ) can be computed with

a finite number of covariance estimations. The correlation function G(3)
i (r ) was

already used in Ref. 14 to bound the spectral gap of Ising and hard core models
on trees.
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A suggestive interpretation of the last definition is provided by the following
procedure. Generate a reference configuration x according to the distribution µ,
and evaluate f (xi ) on it. Then ‘freeze’ everything is outside Bi (r ) and generate
a new configuration x ′

i inside, according to the conditional distribution µx
Bi(r),

(i.e. with the boundary condition given by the frozen variables). Evaluate f (x ′
i )

on the new configuration. The correlation function G(3)
i (r ) is (the sup over f of)

the covariance between f (xi ) and f (x ′
i ). This procedure was indeed discussed in

Ref. 10.
A last definition consists in considering the mutual information(22) between

xi and x∼i,r :

G(4)
i (r ) ≡ I (Xi ; X∼i,r ). (15)

Recall that, given two discrete random variables X and Y with distribution p(x, y),
their mutual information is defined as I (X ; Y ) = ∑

x,y p(x, y) log p(x,y)
p(x)p(y) . A

pleasing interpretation follows from the general principles of information the-
ory. Suppose that a configuration x is generated according to the distribution µ,
but only x∼i,r is revealed to you. In a very precise sense, G(4)

i (r ) measures how
much information you would have about xi .

It turns out that the length scales extracted from G(1)(r ), . . . , G(4)
i (r ) convey

essentially the same information as �i (ε). More precisely, they differ only by a
redefinition of the parameter ε and a rescaling.

Proposition 1. Let �
(n)
i (ε), n = 1, . . . , 4 be defined as in Eq. (11), and µ∗ ≡

minxi ∈X µ(xi ). Then

�
(2)
i (|X |ε) ≤ �i (ε) ≤ �

(2)
i (ε), (16)

�
(2)
i (ε) ≤ �

(1)
i (ε) ≤ �

(2)
i

(
µ∗

ε

2

)
, (17)

�
(2)
i (|X |√ε) ≤ �

(3)
i (ε) ≤ �i (ε), (18)

�
(2)
i (

√
2ε) ≤ �

(4)
i (ε) ≤ �

(2)
i

(
εµ∗

1 − µ∗

)
. (19)

The proof of this proposition can be found in Appendix A.
Notice that all the changes of argument in the above expressions amount to

a finite rescaling in ε, apart from the upper bounds in Eqs. (17) and (19). If µ∗
is bounded away from zero, also these are finite rescalings and the length scales
�i (ε), �(1)

i (ε), . . . , �(4)
i (ε) are all equivalent. In the proof of Theorem 1 we shall

only use the upper bound in Eqs. (16) and (17).
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4. A MEAN FIELD EXAMPLE: THE P-SPIN MODEL ON RANDOM

(HYPER) GRAPHS

In this Section we discuss a particular example exhibiting glassy behavior.
Our objective is twofold. First of all, we want to check to what extent Theorem 1 can
be improved over. Second, we want to show that the idea of diverging correlation
can be of relevance even for mean field systems, as soon as the underlying factor
graph is sparse.

We consider a model of N Ising spins σ = (σ1, . . . , σN ), σi ∈ {+1,−1} (for
historical reasons, we use here σi , instead of xi to denote the i-th variable), defined
through the Boltzmann distribution

µ(σ ) = 1

Z (β)
e−βE(σ ), (20)

E(σ ) = −
M∑

a=1

Ja

∏

i∈∂a

σi ≡ −
M∑

a=1

Jaσi1(a) · · · σi p(a). (21)

Here we think of i ∈ {i, . . . , N } as the variable nodes of a factor graph G, and of a ∈
{1, . . . , M} as its function nodes. Further, we assume G to be a random factor graph
with degree l at variable nodes, and p at function nodes.4 A random factor graph
from this ensemble will also be referred to as a ‘random l-regular hypergraph’
(function nodes being identified with hyperedges joining the neighboring variable
nodes). Finally, β = 1/T is the inverse temperature and the Ja’s are i.i.d. random
variables, uniform in {+1,−1}.

In the following it will be always understood that p, l ≥ 3. It is in fact
expected that for p = 2 the model undergoes a spin glass transition without a
dynamical phase transition, and for l = 2, no phase transition at all occurs at finite
temperature.

As the variables σi can only take two opposite values, the general definitions
given in Sec. 2.3 simplify somewhat. For instance

Ci (t) = 〈σi (0)σi (t)〉 − 〈σi 〉2, (22)

G(3)
i (r ) =

∣∣∣〈σi 〈σi 〉σBi (r )〉 − 〈σi 〉2
∣∣∣ . (23)

The phase diagram of this model is expected to be characterized by two phase
transitions(23): a dynamical phase transition at temperature Td, and a statical one
at Tc < Td (see also Refs. 20, 21 for a detailed study of the dynamics in the case

4 More precisely G is distributed according to the corresponding configuration model. To sample a
factor graph from this ensemble, each of the N variable nodes is attributed l sockets, and each of the
M function nodes, p sockets. The Nl = Mp sockets on the two sides are then matched according to a
uniformly random permutation over Nl elements. Multiple edges are removed, if they occur an even
number of times, and replaced by a single edge, in the opposite case.
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of uniformly drawn random hypergraphs). At high temperature T > Td, Glauber
dynamics is fast and the relaxation time τ does not depend on the system size N.
Note that, in the thermodynamic limit, any finite neighborhood of any spin is a
regular hypertree with high probability. Therefore as far as the τ ′

i s are finite, they
converge in probability to a deterministic value τ .

Below Td, the τ ′
i s become instead exponentially large in N. Heuristic estimates

on the exponential rate can be expressed in terms of free-energy barriers, computed
from the so-called quenched potential.(24,25) In Ref. 26, it was shown that the
spectral gap is exponentially small5 at low enough temperature for some values of
p and l.

Remarkably, the free energy remains analytic in the interval (Tc,∞), and a
true thermodynamic phase transition takes place only at Tc. If p ≥ l, Tc = 0, and
there is no thermodynamic phase transition.

Assuming that this picture is correct (below we shall partially confirm it),
Theorem 1 implies that the correlation lengths �i are finite for T > Td. On the
other hand, for T < Td, the �′

i s are necessarily divergent in the system size. Since
the size of a ball of radius r is bounded as |Bi (r )| ≤ l(p − 1)r (l − 1)r , a moment
of thought shows that � ≥ C log N . On the other hand, � cannot be larger than the
graph diameter, whence � = �(log N ).

In the high temperature phase T > Td, the correlation function G(3)(r ) can
be computed recursively, using a non-rigorous approach that exploits the locally
tree-like structure of the factor graph. Let us sketch the procedure here and refer
to Refs. 21, 27 for a detailed description. We consider a rooted tree factor graph
with R generations T∗(R) defined as follows. For R = 0, T∗(R) is a single node
(the root). For any R ≥ 0, one first defines T∗(R)′ by joining (l − 1) copies of
T∗(R) at the root, and then joins (p − 1) copies of T∗(R)′ to a common function
node a of degree p to obtain T∗(R + 1). The remaining variable node adjacent to
a is the new root. One then generate a configuration σ on this graph according
to the Boltzmann weight (20), ‘freezes’ it from generation r on, and consider
the conditional µi,r (·) = µ(σi = ·|σ∼i,r ), i being the root node. When σ∼i,r is
generated randomly according to the above procedure, µi,r (·) can be considered
as a random variable. Knowing its distribution allows to compute G(3)(r ) (it turns
out that this distribution does not depend upon R). Thanks to the tree structure, a
recursive distributional equation can be written for µi,r (·), and solved numerically
using a sampling (‘population dynamics’) technique.

In Fig. 1, left frame, we plot the results of such a computation for p = l = 3
and a few values of T. As the temperature is lowered towards Td, G(3)(r ) develops
a plateau of length diverging as (T − Td)−1/2. As a consequence, for any ε smaller

5 One interesting feature is that the temperature Tgap below which the gap becomes exponentially small,
is higher than Td. In the temperature range Td < T < Tgap, the slow modes correspond to metastable
states that are ‘not seen’ if the dynamics starts from a random or equilibrated initial condition.
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than the value of G(3)(r ) on the plateau, �(3)(ε) ∼ (T − Td)−1/2. In order to check
whether the lower bound of Theorem 1 is optimal, we estimated the time τ

from Monte Carlo simulations of the heat bath dynamics on large (N = 106)
samples. We averaged over several samples and checked that τi is approximately
independent of i. Our data are presented in the right frame of Fig. 1 and compared
with the lower bound of Theorem 1 with �(3) evaluated via the recursive method.
The correlation time turns out to diverge algebraically at Td : τ ∼ (T − Td)−γ .
Fitting the data, we get γ ≈ 3.2 > 1/2.

In Fig. 2 we plot the exponential growth rate of the correlation time obtained
by extensive numerical simulations on small (N = 100) systems (see also Ref. 28
for an analogous study in the fully connected limit). As above, we consider here
the case l = 3, p = 3. This is compared with a rigorous lower bound stated in
Proposition 2 below, and with the upper bound obtained from Theorem 1, using
|Bi (r )| ≤ N .

The above discussion of the behavior of correlation times was largely based
on the analogy with the fully connected spherical model,(2) and an on heuristic
arguments. Here we confirm rigorously several elements of this picture. For the
sake of definiteness, we shall consider Glauber dynamics with the heat bath rule

κσ
i (σi ) = 1

2
(1 + σi tanh βhi (σ )), (24)

where hi (σ ) = ∑
a∈∂i Ja

∏
j∈∂a\i σ j is the ‘local field’ acting on the i-th spin. Then

we have the following result, whose proof is deferred to Appendices C and D.

T

Υ

0.50.450.40.350.30.25

100

1

0.01

0.0001

Fig. 2. Correlation times for the 3-spin model on random 3-regular graphs at low temperature. Here we
plot ϒ = (log τ )/N versus temperature (τ being uniform average of τi over the site i). The continuous
line is the rigorous lower bound from Proposition 2. The dashed line is the upper bound from Theorem 1.
Symbols correspond to numerical results from Monte Carlo simulations.
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Proposition 2. Let τi (ε) be the correlation time for spin σi in a p-spin model on a
random l-regular hypergraph with p, l ≥ 3. Let T fast

p,l = (arctanh(1/ l(p − 1)))−1,

and T barr
p,l , T ann

p,l be the temperatures defined in Appendix D.

If T > T fast
p,l , then τi (ε) ≤ (1/κ) log(1/κε), where κ ≡ (1 − l(p − 1) tanh β).

If T ann
p,l < T < T barr

p,l , then there exists constants q∗ and ϒ > 0 such that, for

any 1/4 > δ > 0, τi (ε) ≥ eN [ϒ−δ] for at least N (q∗ − δ − ε) spins σi with high
probability.

The analysis in Appendix D also provides rather explicit expressions for the
temperatures T barr

p,l , T ann
p,l as well as for q∗ and ϒ . The numerical values of some of

these constants are reported in Table 1for a few values of p and l.
We are now in position to discuss to what extent Theorem 1 can be im-

proved (here we focus on the large �, large τ behavior) without loosing in the
generality of its hypotheses. In the high temperature phase τ ∼ (T − Td)−γ , while
� ∼ (T − Td)−1/2, and the analogy with fully connected models suggests γ ≥ 1
quite generically.(2) Therefore we expect that the lower bound can be improved at
most to τ ≥ �ζ with, probably, ζ = 2.

At low temperature τ = exp{�(N )} while Theorem 1 implies τ ≤ exp{C N }.
This is optimal apart from a possible improvement in the exponential rate. Our
conclusion is that, without further assumptions on the system, Theorem 1 can be
improved at most to C1�

ζ

i ≤ τi ≤ exp{C2|Bi (�)|}.
Let us finally observe that Proposition 2, together with Lemma 4 imply that

the model (21) undergoes a purely dynamical phase transition. This is the first
time such a behavior is proved for a model of this family (Glauber dynamics on
a sparse graph spin model). In finite dimensional models, we expect that such a
sharp dynamical transition cannot occur. Nevertheless, it would be interesting to
understand whether the correlation time of glassy systems generically undergoes a

Table I. Various Characteristic Temperatures for the p-Spin Model on Random l-

Regular Hypergraphs: T ann is an Upper Bound on the Static Transition Temperature

T c; Td is the Dynamical Transition Obtained by a Cavity Calculation; T barr and T fast

are, Respectively, Lower and Upper Bounds on T d

p l Tann Tbarr Td Tfast

3 3 0 0.470124 0.510 5.944027
3 4 0.854138 0.687684 0.753 7.958158
3 5 1.113214 0.849507 0.935 9.966577
4 3 0 0.376808 0.410 8.962840
4 4 0 0.575513 0.625 11.972171
4 5 0.771325 0.724693 0.785 14.977751
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crossover from a polynomial (τ ∼ �z) to an exponential (τ ∼ exp{�(�ψ )}) relation
with the correlation length.

5. PROOF OF THE LOWER BOUND IN THEOREM 1

For pedagogical reasons we first recall some definitions and well-known
facts from probability theory, that will be repeatedly used in this and the following
proofs. Consider a finite set S and two probability measures p(1), p(2) defined on
it. The total variation distance between these two measures is defined as

‖p(1) − p(2)‖TV ≡ 1

2

∑

x

|p(1)(x) − p(2)(x)|. (25)

One easily checks that this defines indeed a distance, in particular it vanishes if
and only if p(1) = p(2), and that the two following characterizations are equivalent:

‖p1 − p(2)‖TV = max
T ⊂S

|p(1)(T ) − p(2)(T )| = 1 −
∑

x

p̄(x), (26)

where we defined p(x) = min[p(1)(x), p(2)(x)].
Another very useful form of the total variation distance is defined in terms

of couplings of the two measures, that is to say joint distributions q(x1, x2)
whose marginals are p(1) and p(2) :

∑
x2

q(x1, x2) = p(1)(x1) and
∑

x1
q(x1, x2) =

p(2)(x2).
Considering the random variable (X1, X2) ∈ S2 drawn from such a coupling,

one can easily prove that

‖p(1) − p(2)‖TV ≤ P[X1 �= X2]. (27)

Moreover one can construct an optimal (or greedy) coupling that achieves the
bound. We thus have

‖p(1) − p(2)‖TV = min
q

P[X1 �= X2]. (28)

We can now start the proof of the lower bound in Theorem 1 (a presentation
in a restricted setting is provided in Ref. 21). This is based on a ‘disagreement
percolation’ argument first used in Ref. 29 (for recent applications, see Refs.
13, 30). More precisely, for a given variable node i and a positive integer r, we
construct a Markov process (x (1)(t), x (2)(t)) on X N × X N in the following way:

• at the initial time t = 0, a configuration x(0) is drawn from the law µ, and
imposed to the two trajectories, x (1)(0), x (2)(0) = x(0).

• Each variable node owns an independent rate-one Poisson clock. When the
clock at j rings, say at time t:

– if j ∈/ Bi (r ), x (2)
j (t) is replaced by ξ , drawn from κ

x(2)(t)
j (ξ ), and x (1)

remains unchanged.
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– if j ∈ Bi (r ), we draw (ξ1, ξ2) from the greedy coupling between

κ
x (1)(t)
j and κ

x (2)(t)
j , and replace (x (1)

j (t), x (2)
j (t)) by (ξ1, ξ2).

(x (1)(t), x (2)(t)) is a coupling of two Markov processes: viewing them separately,
x (2)(t) is the original dynamics we are interested in, whereas x (1)(t) is the dynamics
on Bi (r ) (cf. Sec. 2.2 for a definition) with boundary condition x∼i,r (0).

Consider now a function f (xi ) with | f | ≤ 1. Conditioning on x∼i,r (0), we
can apply the observation stated in Sec. 2.3 on the dynamics of x (1)

Bi (r )(t) to obtain

f̂ (x∼i,r (0))2 ≤ 〈
f
(
x (1)

i (0)
)

f
(
x (1)

i (t)
)〉x(0)

i,r
. (29)

Averaging over x∼i,r (0), this yields

〈 f (xi (0)) f̂ (x∼i,r (0))〉 ≤ 〈
f
(
x (1)

i (0)
)

f
(
x (1)

i (t)
)〉
. (30)

We now introduce the indicator function

I(t) =
{

1 if x (1)
i (t) = x (2)

i (t)
0 otherwise

, (31)

in terms of which we can rewrite the above inequality as

〈 f (xi ) f̂ (x∼i,r )〉 ≤ 〈
f
(
x (2)

i (0)
)

f
(
x (2)

i (t)
)
I(t)

〉+ 〈
f
(
x (1)

i (0)
)

f
(
x (1)

i (t)
)
(1 − I(t))

〉

≤ 〈
f
(
x (2)

i (0)
)

f
(
x (2)

i (t)
)〉+ 2〈1 − I(t)〉. (32)

In the last step we used the fact that f is bounded in absolute value by 1.
A disagreement percolation argument implies the bound

〈1 − I(t)〉 ≤
(

e�2t

r + 1

)r+1

(33)

Indeed, 〈1 − I(t)〉 is the probability that x (1) and x (2) disagree on the variable
node i at time t. The coupling between x (1)(t) and x (2)(t) has been defined in
such a way that at initial time the two configurations agree on all variable nodes,
and that a disagreement on a node j ∈ Bi (r ) can appear when j is updated only
if at least one of the neighbors of j already bears a disagreeing assignment. In
other words, disagreement has to appear in V \Bi (r ) and propagates towards i.
More formally, let us call a disagreement path α an ordered list of variable nodes
α = (ir , . . . , i1, i0 = i) such that two successive nodes are adjacent in G, and
with diik = k. A path α is said to percolate if there exists a sequence of times
0 < t1 < · · · < tr+1 < t such that the clock of the node ik rings at time tr+1−k .
The quantity 〈1 − I(t)〉 is thus bounded by the probability of the event “at least
one disagreement path has percolated,” which is itself smaller than the product of
the number of such paths by the probability pr+1(t) for a given path to percolate.
As a given clock rings in the infinitesimal time interval [tk, tk + dt] for the first
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time since tk−1 with probability e−(tk−tk−1)dt ,

pr+1(t) =
∫ t

0
dt1e−t1

∫ t

t1

dt2e−(t2−t1) · · ·
∫ t

tr

dtr+1e−(tr+1−tr ) =
∞∑

s=r+1

e−t t s

s!
(34)

≤ tr+1

(r + 1)!
≤
(

et

r + 1

)r+1

. (35)

The number of disagreement paths can be bounded by �2(r+1), hence Eq. (33).
Subtracting 〈 f (xi )〉2 from both sides of Eq. (32), and taking the supremum

over | f | ≤ 1, we obtain

G(3)
i (r ) ≤ Ci (t) + 2

(
e�2t

r + 1

)r+1

. (36)

Setting t = τi (ε) and calling r∗ = max(2e�2τi (ε), log2(2/ε)), we have

G(3)
i (r ) ≤ 2ε ∀r ≥ r∗, (37)

hence an upperbound on �
(3)
i (2ε), which can be translated into the form stated in

Theorem 1 using the inequalities of Proposition 1. �

6. PROOF OF THE UPPER BOUND IN THEOREM 1

The upper bound is proved by viewing the dynamics inside Bi (r ) as the
dynamics of a ‘reduced’ model whose degrees of freedom are only the ones in
Bi (r ), and on which the exterior acts as a time-dependent boundary condition.
On one hand, time correlations inside the system decay in a finite time (since the
system is finite). On the other, if r is large enough, the time-dependent boundary
condition does not affect the behavior in the center of Bi (r ).

Let us begin by defining the Markov dynamics on a subset of the vertices
U ⊆ V with time dependent boundary conditions {y(t)}t≥0. This means that one is
given a sequence of times t0 = 0 < t1 < · · · < tn < · · · with tn → ∞ as n → ∞,
and of configurations y0, y1, . . .. The chain is initialized in a configuration x
distributed according to µ

y0

U . In each time interval [tn, tn+1), n = 0, 1, . . ., one
runs the chain with boundary condition yn . Then, at time tn+1, the configuration
outside U is changed from yn to yn+1. Averages with respect to this process will
be denoted by 〈·〉{y}

U .
It is convenient to state separately the following estimate on time decay of

correlations for this dynamics (for the proof, see Appendix B).
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Lemma 1. Let f and g be two functions of x ∈ X N , such that | f (x)|, |g(x)| ≤ 1
for any x. Then

∣∣∣〈 f (x(0))g(x(t))〉{y}
U − 〈 f (x)(0))〉{y}

U 〈g(x(t))〉{y}
U

∣∣∣ ≤ 2e−(t−1)/τ ∗
U , (38)

where τ ∗
U = exp{A|U }, and A = − log(κ0(1 − e−1)).

Let us now turn to the actual proof. Fix a vertex i, a positive integer r, and
consider a function f of xi , with | f (xi )| ≤ 1 for all xi ’s. By conditioning, we can
write

〈 f (xi (0)) f (xi (t))〉 = E{y}
[
〈 f (xi (0)) f (xi (t))〉{y}

i,r

]
, (39)

where E{y} denotes expectation with respect to the process {y(t)}t≥0 distributed

according to the (stationary) Markov chain on G, and we used the shorthand 〈·〉{y}
i,r

for 〈·〉{y}
Bi (r ). Lemma 1 implies

〈 f (xi (0)) f (xi (t))〉 ≤ E{y}
[
〈 f (xi (0))〉{y}

i,r 〈 f (xi (t))〉{y}
i,r

]
+ 2e−(t−1)/τ ∗(i,r ), (40)

where τ ∗(i, r ) is a shorthand for τ ∗
Bi (r ). The expectation on the right hand side can

be simplified by conditioning on the initial condition y(0):

E{y}
[
〈 f (xi (0))〉{y}

i,r 〈 f (xi (t))〉{y}
i,r

]

= Ey(0)

{
E{y(t>0)}

[
〈 f (xi (0)){y}

i,r 〈 f (xi (t))〉{y}
i,r |y(0)

]}
(41)

= Ey(0)

{
〈 f (xi (0))y(0)

i,r E{y(t>0)}
[
〈(xi (t))〉{y}

i,r |y(0)
]}

(42)

= Ey(0)[ f (yi (0))F(y−∼i,r (0))], (43)

where we defined

F(y∼i,r (0)) = Ey(0)

[
E{y(t>0)}

[
〈 f (xi (t))〉{y}

i,r |y(0)
] ∣∣∣∣y∼i,r (0)

]
. (44)

Since f is uniformly bounded by 1, |F(x∼i,r )| ≤ 1 for all x as well. Moreover one
easily shows that 〈F(x∼i,r )〉 = 〈 f (xi )〉. Subtracting 〈 f (xi )〉2 from Eq. (40) and
using the definition of the spatial correlation function, cf. Eq. (6), we obtain

C f
i (t) ≤ Gi (r ) + 2e−(t−1)/τ ∗(i,r ). (45)

Taking the supremum over f and setting r = �i (ε/2) implies the upper bound of
Theorem 1.
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APPENDIX A: PROOF OF PROPOSITION 1

In this appendix we denote simply by x the variable xi , by y the ‘far apart’
variables x∼i,r and by µ(x, y) (respectively µ(x), µ(y)) their joint distribution (re-
spectively, marginal distributions). Finally, we omit the arguments i and r from the
correlation functions Gi (r ), G(1)

i (r ), . . . G(4)
i (r ). Proving Proposition 1 amounts to

deriving the following inequalities between these functions:
1

|X |G(2) ≤ G ≤ G(2), (46)

G(2) ≤ G(1) ≤ 2

µ∗
G(2), (47)

(
1

|X |G(2)

)
≤ G(3) ≤ G, (48)

1

2
G(2)2 ≤ G(4) ≤

(
1

µ∗
− 1

)
G(2). (49)

Proofs of similar statements can be found repeatedly in the literature. We refer in
particular to Ref. 31 for a general presentation, and to Ref. 32 that deals with the
tree reconstruction problem which is closely related to the theme of this paper.
We collect nevertheless the proofs here for the sake of self-containedness. Notice
that the upper bounds in Eqs. (47) and (49) become trivial if µ∗ = 0. We shall
therefore assume, without loss of generality, µ∗ > 0.

(46), lower bound

In the definition of G, take6 f (x) = I(x = x∗), and F(y) = sign[µ(y|x∗) −
µ(y)]. Then

G ≥
∑

x,y

f (x)F(y)µ(x)[µ(y|x) − µ(y)] = µ(x∗)
∑

y

|µ(y|x∗) − µ(y)|. (50)

The thesis follows by choosing x∗ which maximizes the last expression.

(46), upper bound

We have

G = sup
f,F

∣∣∣∣
∑

x,y

f (x)F(y)[µ(x, y) − µ(x)µ(y)]

∣∣∣∣ ≤
∑

x,y

| [µ(x, y) − µ(x)µ(y)]|,

(51)

6 We denote by I(A) the indicator function for the property A.
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that is what was claimed.

(47), lower bound

We have

G(2) =
∑

x,y

µ(x)

∣∣∣∣
∑

x ′
µ(x ′)[µ(y|x) − µ(y|x ′)]

∣∣∣∣

≤
∑

x,x ′
µ(x)µ(x ′)

∑

y

|µ(y|x) − µ(y|x ′)|, (52)

And the last expression is upper bounded as supx,x ′
∑

y |µ(y|x) − µ(y|x ′)| ≡ G(1).

(47), upper bound

We start by noticing that

G(2) =
∑

x

µ(x)
∑

y

|µ(y|x) − µ(y)| ≥ µ∗ sup
x

‖µY |X (·|x) − µY (·)‖1, (53)

where we introduced the standard notation for L1 norm and used subscripts to pre-
cise which variable we are considering the distribution of. By triangular inequal-
ity ‖µY |X (·|x1) − µY |X (·|x2)‖1 ≤ 2 supx ‖µY |X (·|x) − µY (·)‖1 for any x1, x2. The
thesis follows by taking the sup over x1, x2.

(48), lower bound

Take f (x) = I(x = x∗), and therefore f̂ (y) = µ(x∗|y). Then

G(3) ≥
∑

x,y

f (x) f̂ (y)[µ(x, y) − µ(x)µ(y)] =
∑

y

1

µ(y)
[µ(x∗, y) − µ(x∗)µ(y)]2.

(54)
By maximizing the right hand side over x∗, we obtain

G(3) ≥ 1

|X |
∑

x,y

1

µ(y)
[µ(x, y) − µ(x)µ(y)]2 (55)

= 1

|X |2
(
∑

x,y

1

µ(y)
µ(y)2

)(
∑

x,y

1

µ(y)
[µ(x, y) − µ(x)µ(y)]2

)

≥ 1

|X |2
(
∑

x,y

|µ(x, y) − µ(x)µ(y)|
)2

, (56)
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where the last step followed from Cauchy-Schwarz inequality.

(48), upper bound

Trivial: take F = f̂ .

(49), lower bound

We notice that I (X ; Y ) = D(p‖q) where p and q are distributions on
the pair z = (x, y) defined by p(x, y) = µ(x, y) and q(x, y),= µ(x)µ(y), and
D(p‖q) = ∑

z p(z) log[p(z)/q(z)]. Defining Pλ(z) = (1 − λ)q(z) + λp(z), by el-
ementary calculus

D(p‖q) =
∫ 1

0
(1 − λ)

∑

z

1

pλ(z)
[p(z) − q(z)]2dλ. (57)

By Cauchy-Schwarz (applied to the scalar product with weight 1/pλ(z)) we have∑
z

1
pλ(z) [p(z) − q(z)]2 ≥ (

∑
z |p(z) − q(z)|)2 and the thesis follows.

(49), upper bound

We use pλ(z) ≥ (1 − λ)q(z) in Eq. (57), and get

G(4) ≤
∑

z

1

q(z)
[p(z) − q(z)]2 ≤ sup

z

∣∣∣∣
p(z)

q(z)
− 1

∣∣∣∣
∑

z

|p(z) − q(z)|. (58)

The thesis follows by noticing that p(z)/q(z) = µ(x |y)/µ(x) ≤ 1/µ∗.

APPENDIX B: PROOF OF LEMMA 1

Lemma 1 is a well known elementary result for Markov chains with time-
independent boundary conditions (see for instance(15) for a functional-analytic
argument). We present here an independent and self-contained proof for the general
case. We start by restating it in a slightly stronger form. For this purpose, we
need to define the dynamics on U ⊆ V , with time-dependent boundary condition
{y(t), t ≥ 0} and generic initial distribution ν. This is defined exactly as the process
with time-dependent boundary condition introduced in Sec. 6, but for the fact that
the initial state is distributed according to ν, instead of µ

y(0)
U . It is understood that

ν(x) = 0 unless xV \U = y(0)V \U .

Lemma 2. Let ν
(1)
t and ν

(2)
t the distributions at time t for the dynamics on U ⊆

V , with the same time-dependent boundary condition {y(t), t ≥ 0}, and initial
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distributions (respectively), ν(1) and ν(2). Then
∥∥ν(1)

t − ν
(2)
t

∥∥
TV

≤ e−(t−1)/τ ∗
U
∥∥ν(1) − ν(2)

∥∥
TV

, (59)

where τ ∗
U = exp{A|U |}, and A = − log(k0(1 − e1)).

Proof: Denote by {x (α)(t), t ≥ 0}, α ∈ {1, 2} the two processes. We construct a
coupling of these two processes, similar to the one of Sec. 5:

• at the initial time t = 0, x (1)(0) and x (2)(0) are drawn from the greedy
coupling of ν(1) and ν(2), hence P[x (1)(0) �= x (2)(0)] = ‖ν(1) − ν(2)‖TV.

• When the clock at j ∈ U rings, say at time t, we draw (ξ1, ξ2) from the

greedy coupling between κ
x (1)(t)
j and κ

x (2)(t)
j , and replace (x (1)

j (t), x (2)
j (t)) by

(ξ1, ξ2).

Consider now two times t and t ′ = t + �t > t . If the two processes coincide
at a given time, the definition of the coupling implies that they will coincide at all
subsequent times. Therefore

P
[
x (1)(t ′) �= x (2)(t ′)

] = {
1 − P

[
x (1)(t ′)

= x (2)(t ′)|x (1) �= x (2)(t)
]}

P
[
x (1)(t) �= x (2)(t)

]
. (60)

The conditional probability appearing in the last expression can be lower bounded
by the probability of a particular event implying x (1)(t ′) = x (2)(t ′) irrespective of
x (1)(t), x (2)(t). The event is defined as follows. Each variable in U tries at least one
flip during the time interval [t, t ′) (this happens with probability (1 − e−�t )|U |).
Furthermore, the last time a flip is attempted on each of the spins, it brings the
two coupled processes to coincide on it (this happens with probability at least k0

for each spin). We have therefore

P
[
x (1)(t ′) = x (2)(t ′)|x (1)(t) �= x (2)(t)

] ≥ [κ0(1 − e−�t )]|U |. (61)

Finally consider the time interval [0, t] and split it into [t/�t] sub-intervals of
size �t (plus, eventually a sub-interval of smaller size). By repeatedly applying
Eq. (60), recalling that (1 − x) ≤ e−x and ‖ν(1)

t − ν
(2)
t ‖TV ≤ P[x (1)(t) �= x (2)(t)],

we get

∥∥ν(1)
t − ν

(2)
t

∥∥
TV

≤ exp

{
−[κ0(1 − e−�t )]|U |

⌊
t

�t

⌋}∥∥ν(1) − ν(2)
∥∥

TV
(62)

The thesis is proved by taking �t = 1, and noticing that �t� ≥ t − 1. �

We next show that this result implies Lemma 1. We have

|〈 f (x(0))g(x(t))〉{y}
U − 〈 f (x(0))〉{y}

U 〈g(x(t))〉{y}
U | (63)
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=
∣∣∣∣∣
∑

x,x ′
P{x(0) = x} f (x)g(x ′)[P{x(t) = x ′|x(0) = x} − P{x(t) = x ′}]

∣∣∣∣∣ ≥(64)

≤
∑

x

P{x(0) = x}
∑

x ′
|P{x(t) = x ′|x(0) = x} − P{x(t) = x ′}|. (65)

The sum over x ′ in the last expression is 2‖ν(1)
t − ν

(2)
t ‖TV, for two processes of

initial conditions ν(1)(x ′) = I(x = x ′) and ν(2) = µ
y(0)
U . The proof is completed by

applying Lemma 2, with ‖ν(1) − ν(2)‖TV ≤ 1.

APPENDIX C: HIGH-TEMPERATURE UPPER BOUND

FOR THE p-SPIN MODEL

In this Appendix we prove the first part of Proposition 2: at high enough
temperature, the correlation time τi (ε) is, with high probability, finite.

We begin by recalling that the temperature βfast
p,l = 1/T fast

p,l appearing in the
statement of Proposition 2 is defined as the largest value of β such that

(p − 1)l tanh β ≤ 1. (66)

We shall also use the notation ρ(σ, τ ) to denote the Hamming distance (number
of different spins) between two configurations σ and τ . The proof makes use of
the following crucial result.

Lemma 3. Consider the p-spin model, cf. Eqs. (20) and (21), at inverse temper-
ature β < βfast

p,l , and let µ
(i)
± be the Boltzmann measure, conditioned to σi = ±1.

Then there exists a coupling of µ
(i)
+ and µ

(i)
− such that, if (σ, τ ) is a pair of configu-

rations distributed according to such a coupling, their expected Hamming distance
is bounded as

〈ρ(σ, τ )〉 ≤ 1

1 − l(p − 1) tanh β
. (67)

Proof: Without loss of generality, we set i = 0.
Given a coupling ν between µ

(0)
+ and µ

(0)
− , and a pair of configurations σ, τ

distributed according to ν, let p j (ν) be the probability that σ j �= τ j under ν. By
definition, p0(ν) = 1. We claim that, given j ∈ V, j �= 0, it is possible to construct
another coupling ν ′ between µ

(0)
+ and µ

(0)
− in such a way that

{
p j (ν ′) ≤ tanh β

∑
a∈∂ j

∑
k∈∂a\ j

pk(ν),

pk(ν ′) = pk(ν)∀k �= j
(68)
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We shall denote in the following T j the mapping ν ′ = T jν. The coupling ν ′ can
be defined through the following sampling procedure. First sample σ and τ from
ν. Then draw σ ′

j , τ
′
j by coupling in a greedy fashion the conditional distributions

µ(σ j |σ∼ j ), and µ(τ j |τ∼ j ) (to be explicit, we shall denote these conditional dis-
tributions as µ j (·|σ∼ j ), and µ j (·|τ∼ j ) in the following). Finally set σ ′

k = σk and
τ ′

k = τk for all nodes k �= j , and define ν ′ to be the joint distribution of σ ′ and τ ′.
Obviously pk(ν ′) = pk(ν) for all k �= j . Moreover

p j (ν
′) =

∑

σ,τ

ν(σ, τ )‖µ j (·|σ∼ j ) − µ j (·|τ∼ j )‖TV. (69)

Notice that µ j (·|σ∼ j ) depends on σ∼ j only through σa ≡ {σk : k ∈ ∂a\ j}, with
a ∈ ∂ j . Denote by a1, . . . , al the indices7 of function nodes which are neighbors of

j and define σ (t)t = 0, . . . , l in such a way that σ
(t)
as = σas for s ≤ t and σ

(t)
as = τas

for s > t (in particular σ
(0)
as = τas and σ (l) = σ ). Then

p j (ν
′) ≤

∑

σ,τ

ν(σ, τ )
l∑

t=1

‖µ j (·|σ (t)
∼ j ) − µ j (·|σ (t−1)

∼ j )‖TV ≤ (70)

≤
∑

σ,τ

ν(σ, τ )
l∑

t=1

I(σat �= τat ) tanh β = tanh β

l∑

t=1

Pν(σat �= τat ). (71)

Here we used the fact that

∥∥µ j

( · |σ (t)
∼ j

)− µ j

( · |σ (t−1)
∼ j

)∥∥
TV

= 1

2

∣∣∣∣∣∣
tanh

⎛

⎝β
∑

a∈∂ j

Ja

∏

k∈∂a\ j

σ
(t)
k

⎞

⎠

− tanh

⎛

⎝β
∑

a∈∂ j

Ja

∏

k∈∂a\ j

σ
(t−1)
k

⎞

⎠

∣∣∣∣∣∣
, (72)

and |tanh a − tanh b| ≤ 2 tanh (|a − b|/2). Applying the union bound to Eq. (71),
we get Eq. (68).

We shall now construct another mapping ν ′ = �ν by combining the el-
ementary � j . Defining ν(0) = ν, and ordering arbitrarily the variable nodes

7 Within the configuration model is possible (although with probability vanishing as N → ∞) that the
variable node j has less than l neighboring function nodes. Although the proof remains valid in this
case, we shall not consider it explicitly in order to lighten the notation.
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1, . . . , N − 1, we construct recursively the couplings ν(1), . . . , ν(N−1) with

ν( j) =
{� jν

( j−1) if p j (� jν
( j−1)) ≤ p j (ν( j−1))

ν( j−1) otherwise
, for j = 1, . . . , N − 1.

(73)
Finally we let ν(N−1) ≡ �ν. A moment of thought shows that

p j (�ν) ≤ tanh β
∑

a∈∂ j

∑

k∈∂a\ j

pk(ν), (74)

for all j �= 0.
To conclude the proof, denote by ρ̄(ν) the expectation of ρ(σ, τ ) when σ

and τ are distributed according to the coupling ν, which can also be rewritten as
ρ̄(ν) = ∑

j p j (ν). By summing over j �= 0 Eq. (74), recalling that p0(ν) = 1 and
that each node k is the neighbor of at most l(p − 1) modes j, we get

ρ(�ν) ≤ 1 + l(p − 1) tanh βρ̄(ν). (75)

Since l(p − 1) tanh β < 1, a coupling achieving (67) can be constructed by iter-
ating a sufficient number of times the transformation v �→ �ν from an arbitrary
initial coupling. In fact the sequence of distributions �nν admits a subsequential
limit because the space of distributions over a finite set is compact. �

Notice that the above proof is in fact closely related to the proof of Dobrushin
uniqueness condition(33) as described, for instance, in Ref. 34. For arguments of
this type we also refer to Ref. 35.

We are now in position of proving the upper bound in Proposition 2. Consider
two processes {σ (+)(t)}t≥0 and {σ (−)(t)}t≥0 evolving according to the Glauber
dynamics with initial conditions distributed accordingly to µ

(i)
+ (for σ (+)(0)), and

µ
(i)
− (for σ (−)(0)). In other words, {σ (+)(t)} (respectively {σ (−)(t)}) is the stationary

Glauber dynamics conditioned to σ
(+)
i (0) = +1 (respectively, σ

(−)
i = −1). Then

it is easy to show that

Ci (t) = 1

2

(
1 − m2

i

) [〈σ (+)
i (t)〉 − 〈σ (−)

i (t)〉
]
, (76)

where mi = 〈σi 〉 is the expectation of σi , with respect to the (unconditional)
Boltzmann measure.

Given an arbitrary coupling of the two processes {σ (+)(t)}, and {σ (−)(t)}, the
correlation function is obviously bounded as

Ci (t) ≤ 〈ρ (σ (+)(t), σ (−)(t)
)〉. (77)

We construct such a coupling as follows. The initial conditions σ (+)(0), and
σ (−)(0) are chosen according to a coupling of the conditional distributions µ

(i)
± that



48 Montanari and Semerjian

achieves the bound (67). The joint dynamics is defined using ‘path coupling.’(19,36)

This construction only requires to define the evolution of σ (+)(t) and σ (−)(t) when
they differ in a single position. If this is the case, we use the greedy coupling of the
update probabilities, as in the proof of Lemma 1, cf. Appendix B. From a pair of
configurations (σ+, σ (−)) with ρ(σ (+), σ (−)) = 1, the expected (with respect to the
greedy coupling). Hamming distance after one spin update can be upper bounded
by 1 − (κ/N ), with κ ≡ (1 − l(p − 1) tanh β). Standard path coupling arguments
allow to extend this bound for an arbitrary number of spin updates. Let us denote
by Ut the number of spin flips between times 0 and t (i.e. a Poisson variable of
mean Nt), and by EU the corresponding expectation:

Ci (t) ≤ 〈ρ(σ (+)(0), σ (−)(0))〉EU

(
1 − κ

N

)Ut ≤ κ−1 exp{−κt}, (78)

which clearly implies the thesis.

APPENDIX D: LOW-TEMPERATURE LOWER BOUND

FOR THE p-SPIN MODEL

In this Appendix we prove the second part of Proposition 2 on the corre-
lation time of the p-spin model on random regular hypergraphs. Throughout the
Appendix we denote by Qσ,τ = N−1

∑N
i=1 σiτi the normalized overlap of configu-

rations σ and τ . We further let Z (β) be the partition function, i.e. the normalization
constant in Eq. (20), and Z (q; β) the constrained partition function

Z (q; β) ≡
∑

σ (1),σ (2)

e−βE(σ (1))−βE(σ (2))
I(Qσ (1),σ (2) = q), (79)

where q ∈ {−1,−1 + 2/N , . . . , 1 − 2/N , 1}.
It is convenient to state a few preliminary results. We start by computing the

expectation of Z (β) and Z (β, q). It is straightforward to get

EZ (β) = 2N (cosh β)M = eNφ (β) (80)

where we defined φ(β) = log 2 + l
p log cosh β. The expected constrained partition

function is only slightly more involved

EZ (q; β) = 2N

(
N

m

)(
Nl

ml

)−1

coeff
[
((cosh 2β)p+(x) + p−(x))M , x (N−m)l

]

.= eNφ (q;β) (81)

where we denoted by
.= identity to the leading exponential order, m ≡ N (1 + q)/2,

and p±(x) = (1 + x)p ± (1 − x)p/2. Using Haymann (or saddle-point) method,
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one obtains the exponential growth rate

φ(q; β) = log 2 − (l − 1)h

(
1 − q

2

)
+ l

p
log((cosh 2β)p+(zq )

+p−(zq )) − l
1 − q

2
log zq , (82)

where h(x) = −x log x − (1 − x) log(1 − x) is the entropy function and zq is the
unique non-negative solution of the equation

zq
(cosh 2β)p′

+(zq ) + p′
−(zq )

(cosh 2β)p+(zq ) + p−(zq )
= p

1 − q

2
. (83)

The function φ(q; β) is straightforwardly evaluated numerically.
Let us underline some of its properties. One easily shows that for all tem-

peratures, it has a local maximum at q = 0, with φ(0; β) = 2φ(β). Moreover, for
β = 0, the function reduces to φ(q; 0) = log 2 + h((1 − q)/2), for which q = 0
is the global maximum. We define βann

p,l as the largest value of β such that for any
β ′ < β, φ(q; β ′) achieves its global maximum at q = 0. Notice that, if p ≥ l, then
βann

p,l = ∞.
Let us now turn to the behaviour around q = 1. A simple calculation shows

that φ(q = 1; β) = φ(2β). Let us define U (q; β) ≡ φ(q = 1; β) − φ(q; β), and
U (q; ∞) its limit as β → ∞. Taking afterwards the limit q → 1, one shows that
U (1 − δ; ∞) = −(l − 2)(δ log δ)/4 + O(δ).

We define the annealed free energy barrier

ϒ(β) ≡ sup
α∈(1/2,1)

[(1 − α)ϒ0(β) − φ̃(β, α)], (84)

ϒ0(β) ≡ sup
q∈(0,1]

U (q; β), (85)

φ̃(β, α) ≡ αφ((2 − α−1)β) + (1 − α)φ(2β) − φ(β). (86)

From the behaviour of U (q; ∞) in the limit q → 1 one can deduce that, if
l ≥ 3, ϒ0(β) is strictly positive for β large enough. On the other hand, φ̂(β, α) is
non-negative because φ(β) is convex. From the low temperature expansion φ(β) =
(1 − l/p) log 2 + (l/p)β + O(e−2β ) it follows that φ̂(β, α) → 0 as β → ∞. We
proved therefore that, if l ≥ 3, there exists β < ∞ such that ϒ(β ′) > 0 for β ′ > β.
We call βbarr

p,l the smallest β with such a property. The numerical estimation of
the associated temperatures (inverse of β) for a few values of (p, l) are given in
Table 1.

These computations have several immediate consequences. The first is that
they yield the free energy in the thermodynamic limit.
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Lemma 4. Consider the model (20), (21) with p ≥ 3 and l ≥ 2, and let
φ(β) be given as above. Define the expected free energy density as φN (β) ≡
N−1

E log Z (β), and assume β < βann
p,l . Then φN (β) → φ(β) as N → ∞. Fur-

thermore, for any δ > 0 there exists C(δ) > 0 such that:

P{| log Z (β) − NφN (β)| ≥ Nδ} ≤ 2e−NC(δ). (87)

Proof: The statement φN (β) → φ(β) follows from the second moment method
applied to the random variable Z (β) (notice that EZ (β)2 .= exp{N supq φ(q; β)}).
Equation (87) can then be proved through standard concentration inequa-
lities.(37) �

Lemma 5. Consider the model (20), (21) with p ≥ 3 and l ≥ 2, and let φ(q : β)
be defined as in Eqs. (82) and (83). Then, for any β > 0 and any δ > 0, and any
N large enough:

P{Z (q; β) ≥ eN [φ(q;β)+δ]} ≤ e−Nδ/2. (88)

Proof: This is just Markov inequality applied to the random variable Z (q; β),
noting that lim(1/N ) log EZ (q; β) = φ(q; β). �

Lemma 6. Consider the model (21) with p ≥ 3 and l ≥ 2, and β < βann
p,l . Let

σ (1) and σ (2) be two i.i.d. configurations drawn from the Boltzmann distribution
(20), and denote by Q12 be their overlap. Then, for any δ > 0, there exist constants
C1 and C2 > 0 such that, for all N large enough

P{|〈Q12〉| ≥ Nδ} ≤ C1(δ)e−NC2(δ). (89)

Proof: First notice that, by the two previous Lemmas, there exist constants C1(δ)
and C2(δ) such that, with probability at least 1 − C1(δ)e−NC2(δ) the following hap-
pens: (i) Z (q; β) ≤ eN [φ(q;β)+δ2] for any q ∈ {−1,−1 + 2/N , . . . , 1 − 2/N , 1},
and (ii) Z (β) ≥ eN [φ(β)−δ2]. Under these conditions, for any ξ > 0 we have

〈Q12〉 ≤ ξ + P{|Q12| ≥ ξ} = ξ + 1

Z (β)2

∑

|q|≥ξ

Z (q; β) (90)

≤ ξ + e3Nδ2
∑

|q|≥ξ

exp{N [φ(q; β) − 2φ(β)]}, (91)

with the sum being restricted to q ∈ {−1,−1 + 2/N , . . . , 1 − 2/N , 1}. Recall
that q = 0 is a stationary point of φ(q; β) with φ(0, β) = 2φ(β). A little calculus
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shows that φ′′(0; β) < 0 for any p ≥ 3. As a consequence for any T > T ann
p,l there

exists α > 0 such that φ(q; β) ≤ 2φ(β) − αq2. Therefore

|〈Q12〉| ≤ ξ + 2Ne3Nδ2−N
αξ2 . (92)

By taking ξ = 2δ/
√

α, we have |〈Q12〉| ≤ 4δ/
√

α for any N large enough. The
thesis follows by rescaling δ. �

The crucial step is made in the next Lemma, which estimates the global
correlation function

C̃(t) = 1

N

N∑

i=1

〈σi (0)σi (t)〉. (93)

Lemma 7. Consider the model (20), (21) with p ≥ 3, l ≥ 2 and βbarr
p,l ≤ β ≤

βann
p,l . Let ϒ = ϒ(β) be the associated annealed free energy barrier, and q∗ be

the largest value of q at which the sup in Eq. (85) is achieved. Then, for any
δ ∈ (0, 1/4], and t > (4/N ) log(2/δ), one has C̃(t) ≥ q∗ − δ − te−N [ϒ−δ] with
high probability.

Proof: Consider two equilibrium trajectories {σ (1)(t) : t ≥ 0}, {σ (2)(t) : t ≥ 0}
evolving independently according to the stationary Glauber dynamics for the
model (20), (21). In particular, at any time σ (1)(t) and σ (2)(t) are distributed
independently according to the equilibrium distribution µ. We further let Q(t) ≡
Qσ (1)(t),σ (2)(t). Throughout the proof, we denote by E and P, respectively, expectation
and probability with respect to this process (not to be confused with expectation
and probability with respect to the graph and energy function).

It is elementary that

C̃(2t) =
∑

σ

µβ(σ )E
[
Q(t)σ (1)(0) = σ (2)(0) = σ

]
. (94)

where, for future convenience, we specified the temperature β at which the Boltz-
mann measure must be considered. Let us denote by Iσ the event {σ (1)(0) =
σ (2)(0) = σ }. Moreover, for any q ∈ {−1,−1 + 2/N , . . . , 1 − 2/N , 1}, we de-
note by Aq,t the event that there exists a time s ∈ [0, t] such that Q(s) = q.
Clearly

E[Q(t)|Iσ ] = P{Aq,t |Iσ }E[Q(t)|Iσ ,Aq,t ]

+ (1 − P{Aq,t |Iσ })E[Q(t)|Iσ ,Aq,t ] (95)

≥ −P{Aq,t |Iσ } + q(1 − P{Aq,t |Iσ ) (96)

= q − (1 + q)P{Aq,t |Iσ }. (97)
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Denote by Ut the total number of spin flips in the two configurations up to time t
(this is a Poisson random variable of mean 2Nt). Then

P{Aq,t |Iσ } ≤ P{Aq,t |Iσ , Ut ≤ 4Nt} + P{Ut > 4Nt} (98)

≤ P{Aq,t |Iσ , Ut ≤ 4Nt} + e−Nt/2. (99)

If we call U the event {Ut ≤ 4Nt}, we found

C̃(2t) ≥ q − 2

{
∑

σ

µβ(σ )P{Aq,t |Iσ ,U} + e−Nt/2

}
(100)

Call F(σ ) ≡ P{Aq,t |Iσ ,U}, and choose α ∈ (1/2, 1). By Hölder inequality

∑

σ

µβ(σ )F(σ ) =
∑

σ

µ2β(σ )

(
µβ(σ )

µ2β(σ )

)
F(σ ) (101)

≤
{
∑

σ

µ2β (σ )

(
µβ(σ )

µ2β(σ )

)1/α

F(σ )

}α {∑

σ

µ2β(σ )F(σ )

}1−α

(102)

= Z (β(2 − α−1))α Z (2β)1−α

Z (β)

{
∑

σ

µ2β(σ )F(σ )

}1−α

, (103)

where, in passing from (102) to (103), we used the fact that F(σ ) ≤ 1 and the
definition of Z (β). A moment of thought reveals that

∑

σ

µ2β(σ )F(σ ) = P{Aq,t |Q(0) = 1,U} ≤ P{Aq,t |Ut ≤ 4Nt}
P{Q(0) = 1} (104)

≤ 4Nt
P{Q(t) = q|Ut ≤ 4Nt}

P{Q(0) = 1} ≤ 8Nt
P{Q(t) = q}
P{Q(0) = 1} . (105)

(the last inequality follows from the fact that P(Ut ≤ 4Nt) ≥ 1/2 for t ≥
2
N log 2). Next notice that P{Q(t) = q} = Z (q; β)/Z (β2), and P{Q(0) = 1} =
Z (2β)/Z (β)2. Putting the various terms together, we obtain

C̃(2t) ≥ q − 2e−Nt/2 − 2(8Nt)1−α Z (β(2 − α−1))α Z (q; β)1−α

Z (β)
. (106)

Using Lemmas 4 and 5, the product of the partition functions can be upper
bounded by exp[−N ((1 − α)U (q; β) − φ̂(β, α) − δ/2)], for any δ > 0, with high
probability. With the hypothesis of the lemma 8Nt > 1, we can thus replace
(8Nt)1−α by 8Nt in the inequality. Moreover this prefactor 8N will be smaller
than exp[Nδ/2] for large enough N. We will also have 2e−Nt/2 ≤ δ. Fixing q
in such a way to achieve the sup in Eq. (85) and optimizing over α ∈ (1/2, 1)
completes the proof. �
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We can now prove the low temperature lower bound in Proposition 2. Consider
the sum of the local correlation functions

C(t) = 1

N

N∑

i=1

Ci (t) = 1

N

N∑

i=1

[〈σi (t)σi (0)〉 − 〈σi (t)〉〈σi (0)〉]. (107)

One has C(t) = C̃(t) − 〈Q12〉, where Q12 is the normalized overlap of two i.i.d.
configurations σ (1) and σ (2) distributed according to the Boltzmann measure (20),
(21). Lemma 6 implies that, for any δ > 0, C(t) ≥ C̃(t) − δ with high probability.
By Lemma 7, we have therefore

C(t) ≥ q∗ − 2δ − te−N [ϒ−δ]. (108)

Fix t∗ = eN [ϒ−2δ]. Then, for N large enough, we have C(t∗) ≥ q∗ − 3δ. If f (ε) is
the fraction of sites i such that τi (ε) > t∗, then C(t∗) ≤ f (ε) + ε, hence f (ε) ≥
q∗ − 3δ − ε. The thesis follows by rescaling δ.
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